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(Received November 12, 1979) 

In two subsequent articles we shall report our molecular dynamics investigations for the three 
partially miscible fluid mixtures CHJCF,; Ne/Kr; He/Xe. The goal of these studies was the 
simulation ofthese mixtures at the larger vicinity of thecritical mixing point and the investigation 
of the microscopic behaviour. 

This first part describes basic aspects of modelling a critical point by molecular dynamics 
calculations (MDC) and examines the experimental and theoretical data for the larger neigh- 
bourhood of a critical mixing point of binary fluids. 

For the systems under study it is shown that Lennard-Jones type potentials can serve as an 
appropriate basis for MDC. The adjustment of the Lennard-Jones potential parameters of the 
1-2 interaction was done in terms of the parameters occuring in the Redlich-Kwong equation of 
state. 

The second article’ is concerned with the actual MD-results on the static and dynamic 
microscopic structure of the mixtures for the region of the critical mixing point. It is shown that 
the near-critical range of the systems is simulated reasonably by our MDC. 

1 INTRODUCTION 

The study of critical points of various many-body systems has always been 
a difficult task for experimentalists and theorists. However, the under- 
standing of the behaviour of systems near a critical point has greatly been 
improved in the period of the last 20 years. This has been primarily achieved 
by improved experimental techniques of scattering measurements by light, 
x-ray and neutrons. Furthermore there were modern theoretical treatments 
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246 C .  HOHEISEL 

available, as the renormalisation group and the mode-mode coupling, 
which allowed a deeper view into the nature of critical phenomena. 

Though for pure substances and multiple-component systems the vicinity 
very close to a critical point, I T - T,I 5 1 K (T ,  critical temperature), is well 
investigated experimentally and theoretically, there was much less attention 
paid to the larger region around a critical state. This is clear from the fol- 
lowing facts: most of the measurable properties of fluids and magnetizeable 
systems change anomalously only very near the critical state. Furthermore 
for the current theories it is often assumed that the correlation length of the 
systems is large compared with a few interparticle-distances. 

Consequently reasonable comparisons of the theory and experiment are 
actually possible for states very close to the critical point, where the correla- 
tion length of most of the systems has sharply increased. The modern 
scattering experiments by x-ray and neutrons are principally able to give 
information about the microscopic behaviour of systems in this interval 
between a non-critical state and a state very near the critical one. Un- 
fortunately such experiments are very complicated, particulary, when x-ray 
as well as neutrons are to be used for a row of thermodynamic states.* 

So far only a few experiments have been performed to investigate the near- 
critical region. The term near-critical region is introduced here as a short 
definition of the above described broader interval around the critical point, 
1 K 5 I T - T,I 5 10 K. The results of these studies yielded only quantitative 
conclusions and have hardly increased our knowledge about the static and 
dynamic microscopic processes in this region of a critical point.3 It was 
commonly accepted that the nearest neighbourhood of the molecules re- 
mains nearly unchanged, when the critical point is approached. 

A further lack of information about critical phenomena has arisen from 
the fact that currently there are no theoretical treatments of a fluid at a 
critical point. All existent theories are based on lattice-gas models. Although 
from the universality principle it is concluded that lattice and fluid systems 
exhibit the same critical behaviour, it has not explicitly been shown that 
non-localized particles behave like localizcd ones, when the correlation 
length of the particle systems is appreciably larger than the interparticle- 
distance! 

Computer-simulation-methods have frequently been used to study many- 
body systems in condensed phase, and the results of these calculations have 
much improved our understanding of liquids and fluids. For non-critical 
systems a lot of molecular dynamics calculations and Monte-Carlo calcula- 
tions have been carried out to determine the microscopic properties, which 
at time are not accessible by experiment. 

In general these model calculations are performed with ensembles of 
100-1OOO particles, where the size of the systems is not greater than about 
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 247 

1.25 x lo5 A3. Systems of such finite size will however not exhibit a critical 
point, consequently a critical state cannot directly be described by computer 
calculations. 

Nevertheless it should be possible to simulate approximately the near- 
critical region of experimental systems or models by machine calculations, as 
long as the correlation length of the near-critical system is comparable to 
the microscopic length of the “computer-ensemble.” 

Therefore the study of a near-critical region using computer simulation 
methods is on one hand very limited, but on the other hand the results of 
the calculations can reasonably be checked and if necessary improved by 
varying the number of particles and periodic boundary conditions. 

This has been illustrated through Monte-Carlo calculations on magnetize- 
able systems near the Curie-point. In a few instances, Binder5 has even 
evaluated critical exponents from his calculations, which agree well with 
those experimentally found or theoretically predicted. The modelling of a 
near-critical state of a simple lattice spin-system is not so complicated as that 
of a fluid, but the problem of the finiteness of the systems at a critical point 
occurs in both cases. 

To our knowledge there are no computer-simulation-calculations, neither 
for pure fluids nor for fluid mixtures, which in detail treat the microscopic 
properties of systems near the critical r e g i ~ n . ~ , ~  However, Adams’ has 
recently shown that Monte-Carlo calculations are able to reproduce reason- 
ably the region near a critical point of a “ Lennard-Jones-fluid.” By using 
the experimentally known critical exponents he extracted realistic critical 
values for the temperature, the pressure and the density. These results 
indicate that fluid systems can be realistically simulated in the range of a 
critical point. 

Our molecular dynamics calculations on mixtures have primarily been 
performed to elucidate the following questions : 

a) Is it possible to simulate the main features of the near-critical region 

b) What information is available about the molecular processes leading 

Binary mixtures are generally less suited for simulation-calculations than 
pure fluids due to the three potential functions describing the three inter- 
actions. This drawback, however, seemed to be acceptable in view of several 
advantages. For the critical region, the density of a mixture is much less 
temperature dependent and therefore experimentally known much more 
accurately than the density of a pure s u b s t a n ~ e . ~ * ~  Binary liquid mixtures 
exhibit critical phenomena in a larger interval around the critical point than 

of a simple binary fluid mixture on the basis of effective pair-potentials. 

to a critical state. 
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248 C. HOHEISEL 

one-component systems do.” Pertaining to MDC, a binary system ap- 
parently is more stable against local concentration fluctuations than a mono- 
molecular system against density fluctuations.’ 

Our calculations were carried out to simulate the experimental systems: 
CHJCF,; Ne/Kr and for further comparisons He/Xe. Significant results 
were obtained in terms of the static and dynamic pair-distribution functions 
and by the self-diffusion coefficients of these mixtures. 

’ 

2 THE CRITICAL POINT AND THE NEAR-CRITICAL REGION 

In  a binary liquid mixture we have instead of a critical point of a pure liquid 
a critical line, along which at least two of the coexistent phases become 
identical with respect to their intensive variables I3*l4. The phases can be 
part of the thermodynamic gas-liquid range (L-G) or only of the pure 
liquid range (L-L). The latter case is called a critical phase separation. The 
phase-diagrams of partially miscible multiple-component systems often ex- 
hibit a very complex shape and can be interpreted for only a few grQups of 
 substance^.^.' For example, if the critical mixing temperaturm of those 
systems lie above the critical temperatures of the pure components,’as it is 
found for a few rare-gas mixtures under high pressure, this is named a “gas- 
gas phase separation.” For multiple-component systems it is furthermore 
possible to observe a so-called tricritical point, at which three phases become 
identical.”.’ 

The thermodynamic conditions for a binary fluid mixture showing a critical 
mixing point can be formulated in analogy to those for a pure substance. As 
function of concentration x the chemical potential p of a mixture has a point 
of inflection with a horizontal tangent at the critical mixing point and at 
constant T and P: 

The higher derivatives of p are also allowed to vanish, but it can be proved 
that the first non-vanishing one has to be odd and positive.10i14 

From the relations (1) it is clear that in general the two-component 
systems have critical lines due to the Gibbs’ phase rule, becauw (1) holds for 
different values of T and P. 

Since the inverse osmotic compressibility is proportional to &/./ax, we 
derive from (1) that the osmotic compressibility diverges at tbo critical 
mixing point. Consequently in a binary mixture, largs local mngentration 
fluctuations should occur at the critical point, becauee difierentxs between 
local compositions cannot be rebalanced. This has experimestally been 
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 249 

proven for a number of binary systems in terms of the binary diffusion co- 
efficient D12. From theoretical arguments it is derivable that D,, varies 
proportionally to the concentration gradient of the chemical potential 
~?p/ax . ’~ * ’ ‘  In so meclsuring the binary diffusion coefficient D,, we are able 
to determine ap/C?x; The vanishing of D , ,  at the critical mixing point is 
confirmed several tithes.’ 7* For the mixture Waterpriethylamine a de- 
crease of D12 has been observed of about two orders of magnitude, when 
the critical ternperattire, T,, was approximated in the range of T, + 1 to 

A row of furthet quantities behaves anomalouslyt at the critical mixing 
point, as is knowrl ham experimental experience. The specific heat and the 
stress-viscosity increalse sharply in this r eg i~n . ’~ -~ ’  The sound-velocity falls 
down close to the critical point.” The surface tension seems to behave 
anomalously, althadgh for binary mixtures this property is less inve~tigated.~ 

In contrast to this the thermal conductivity and the self-diffusion exhibit 
the usual behavimr heslr the critical mixing p ~ i n t . ~ . ~ ~  For instance the self- 
diffusion coefficie’rlt af few binary liquids showed no anomalies, even 0.05 K 
close to the critiel tei~iperature.’~ 

The molecular pra62sdes and the structure of critical mixtures are directly 
investigated by scatterifig experiments with rays of various wave-length. 
Visible light df a wdve4ength of - 5000 8, give important knowledge about 
the long-range order In fluids at the close vicinity of the critical point. 

X-ray and necltrariS complementarily provide information about the near 
and nearest mighbotirhood of molecules in non-critical and near-critical 
~ysterns.’~ 

The quantittitive, light-optical indication of critical phenomena is ogtain- 
able in the radg6 of 1-2 K near the critical point of a mixture.” For instance, 
Furth and co-wotkefs26 have determined integral pair-correlation functions 
from light sci4tkdhg measurements on a number of binary systems. Their 
experiments indibated tifi itlcrease of the coherence length of about 50%, 
when the tewpsfature varied from T,  + 0.3 to T, + 0.05 K at the critical 
concentration. Tbeh the absolute range of the coherence length already 
amounts to 1000-3oOo A. 

Far away iind at a moderate distance from the critical mixing point, light- 
scattering ctth only provide qualitative information. For example: The 
system CHj-CTH/CS2 begins to show critical opalescence already 8-1 0 K 
above the upper critical solution point, whereas for the mixture C,F,,/ 
C7H16 a weak dpalescdnce is visible 3-5 K above the critical temperat~re.’~ 
Similar obsetvatiaris have been made in scattering measurements by acoustic 

T, + 0.1 K.” 

t ‘Anomalous’ is used in the sense that at the critical point a quantity exhibits a differing 
behaviour as fudcticfii bf t~ chdsen variable compared to that at noncritical conditions. 
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250 C .  HOHEISEL 

waves, despite the fact that mechanic waves have a wave-length of a factor 
103-104 greater than light. Chynoweth and SchneiderZ8 have discovered an 
appreciably anomalous absorption of sound already 8 K below the lower 
critical mixing point of the mixture Water/Triethylamine.” 

X-ray scattering experiments, in contrast, provide detailed quantitative 
knowledge of a system in the near-critical region, particularly, of molecular 
spheres of 10- 100 A. Brady and c o - w ~ r k e r s ~ ~  have performed small-angle 
x-ray scattering measurements on the system c7F16/i-c8H18. Their ex- 
periments resulted in an estimation of the average cluster-volume occupied 
by the molecules of the same kind at about 4 K above the critical temperature 
of the system. From that cluster-volume of a symmetric cylinder of 5.4 x lo4 
A3, we roughly obtain a correlation length of about 45 A. This value is in 
agreement with the numbers evaluated from modern measurements on the 
system Cy~lohexane/Aniline.~~ 

The authors of these later experiments derived a coherence length of 
about 30 A for T - T, - 4 K. We will refer back to the latter measurements 
in the following paragraph. 

Even for the remarkable distance of about 15 K away from the critical 
point, Brady and c o - ~ o r k e r s ~ ~  were able to prove a significantly increased 
coherence length of the system C,F, &-C8H 8 .  

The radius of gyration therein determined by an analysis of the scattering 
data, can roughly be converted to the coherence length, and a value of about 
20 A is retained for T - T, x 16.5 K. This value, too, falls in line with the 
measurements on the system Cyclohexane/Aniline, which yielded - 15 A for 

Unfortunately most of the further small-angle x-ray scattering experiments 
have been done very close to the critical solution temperature, so a more 
extensive comparison with other studies is not possible. 

Nevertheless, the results reported above are gathered from independent 
work and they indicate that very differing binary fluid mixtures behave 
similarly in the near-critical region. In view of that it appears justified to 
compare directly our present simulation-calculation-results with these 
experimental data of other systems. 

T - T, - 15 K.31 

3 CORRELATION FUNCTIONS, CORRELATION LENGTH 

Our modern understanding of the structure and dynamic processes of molecu- 
lar many-body systems is primarily obtained by means of the static and 
dynamic correlation functions. Especially fluid systems can be characterized 
in terms of these correlation functions, since microscopic models for fluids 
are generally not to be based on a lattice structure. Two of the most important 
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 25 I 

correlation functions are the radial pair-distribution functions g(r)  and the 
dynamic pair-distribution function G(r, t ) .  Van Hove33 was the first who 
has discussed the connection between G(r, t )  and scattering data of neutrons 
on magnetizeable systems. He split this function into two parts: 

Where the G, is called the self-term and Gd the distinct-term. G,  governs the 
selfdiffusion process of the system, while Gd characterizes the collective 
behaviour of the particles. The function Gd(r, t = 0) is identical with g(r), 
if Gd is appropriately normalized. Both functions G, and Gd are accessible 
from neutron-scattering experiments and computer-simulation studies. 

In experiments frequently the Fourier transforms of these correlation 
functions are determined. These so-called structure factors S(k) and S(k, w) 
depend on the intensity and the spectrum of the scattering waves. In particular, 
the static structure factor S(k) (k wave-vector) is proportional to the total 
cross section assuming the static appro~ ima t ion .~~  The dynamic structure 
factor S(k, w) (w angle-frequency) is measured through the twofold differen- 
tial cross-section. 

Near a critical point it is necessary to attain high resolution to determine 
significantly S(k, w). The modern laser light spectrometers, however, allow 
the evaluation of S(k, w )  even at I T - T,I x 

Clearly the complete determination of these correlation functions is not 
achievable, since the range of (k, w )  investigated by experiments or simula- 
tions is often very limited. In many cases it is not even possible to obtain a 
reasonable Fourier inversion of the actual data.36 

The entire information about the correlation functions is desirable for a 
(k, w)-range, which covers the complete coherence range of the system. 

For a system extremely close to a critical point we consequently have to 
know the correlation functions over an immense (k, w)-range due to the 
increased correlation length of the system. It turned out, however, that in 
critical systems the spectrum of long wave-lengths' and low frequencies is 
governing the properties of the system, so that the evaluation of the correla- 
tion functions for this (k, w)-region is s u f f i ~ i e n t . ~ ~ ~ ~ ~  

In contrast to this, our investigation of the near-critical region requires 
the knowledge of the correlation functions over the whole coherence range 
of the system, if specifically the transition from a non-critical state to a critical 
state is to be studied. Our MDC have therefore been extended as far as pos- 
sible to derive the correlation functions for a wide (r, t)-range. 

A critical or a near-critical system is microscopically defined by an 
increased coherence length. This molecular parameter of length essentially 
describes the range of order in a system and is therefore closely related to the 

K.35 
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252 C. HOHEISEL 

net pairdistribution function h(r) = g(r) - 1. An exact definition is fre- 
quently introduced by the second moment of h(r):” 

1 <’ = - 6 I r ’  . h(r) * dr/ lh(r) .  dr (3) 

or by means of the asymptotic behaviour of h(r) for large r. After Ornstein- 
Zernike3’ the net pair-distribution function h(r) exhibits an exponential 
decrease for large r :  - 

(4) 

Where f(r) designates a weakly r-dependent function and t is the logarithmic 
decrement of the envelope of h(r).31337 

Sufficiently away from the critical state h(r) disappears within a few inter- 
molecular distances, so that < commonly amounts to 5-10 A. At the critical 
point, however, the coherence length diverges and the integrals in (3) be- 
come infinite. The exponential part in (4) has to be dropped, and h(r) is long- 
range. Near the critical point, I T - T,I ,< 1 K, the definitions of (3) and (4) 
can be used in a modified form, if scaling-relations for < are included4O At 
this close vicinity of the critical point there are mainly three methods to 
determine 5 for a binary fluid mixture by light-scattering  experiment^:^'*^' 

a) Measuring the differential cross-section, i.e. evaluating the local dis- 
tribution of the intensity of the scattered light. 

b) Measuring of the total cross-section, i.e. determination of the turbidity. 
c) Determination of the half-width of the Rayleigh line from the spectrum 

of the scattered light. 
In contrast to these investigations very near the critical point, we have 

studied the near-critical region of several mixtures by means of simulation 
calculations. Direct experimental knowledge about the near-critical region 
can only be obtained by x-ray and neutrons, as we have already explained in 
Section 2. There is however one possibility to assess the correlation length in 
the near-critical region of binary systems by light-scattering experiments. 
Volochine and co-workers” have combined experimental results with 
theoretically derived relations and they were able to prove a significant 
dependence of < from temperature, up to the appreciably large distance of 
T - T, - 30 K. Volochine applied the Einstein-Stokes-Kawasaki formula 
on the binary diffusion coefficient D ,  : 

and measured the D I 2  of the system of Cyclohexane/Aniline as function of 
temperature in terms of the half-width of the Rayleigh line.35 The viscosity 
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 253 

values q thereby were taken from Arcovito’s By this method he ob- 
tained a linear correlation between the coherence length t and the tempera- 
ture difference, T - T,, in a twofold logarithmic plot, as expected from the 
scaling law for 5. However, the range the plot was valid for turned out to be 
surprisingly large. For a temperature range of 1 K 5 T - T,  5 30 K, 5 
varied between 8 A 5 t 5 90 A. Beyond T - T,  > 30 K there was no further 
alteration of t, the coherence length remained at the value of -8  A. These 
findings agree with the x-ray scattering investigations of Brady already re- 
ported in Section 2, and show definitely that for partially miscible liquid 
mixtures of critical composition, the (homogeneous) system behaves non- 
critically only in a temperature region considerable distant from the critical 
solution t e m p e r a t ~ r e . ~ ~  

The results of our simulation calculations indicate similar phenomena for 
the binary fluid mixtures studied herein. It can be concluded from our cal- 
culations that the mixtures considered for simulation show near-critical 
behaviour up to T - Tr - 25 K, where Tr is the estimated pseudo-critical 
temperature of the model system (see next paragraph). 

Analogous to the coherence length t one has to consider the characteristic 
time constant t,, i.e. a characteristic frequency o, = l/t ,  of a system. t, is 
the microscopic time parameter of the system and can be defined similarly 
in the Eqs. (3) and (4) by the time-dependent pair-distribution function 

Under critical conditions t ,  diverges together with the correlation length <. 
This is experimentally verified and is known as the “critical slowing 

The increase oft,, i.e. the decrease of w,, near a critical point, is 
accessible from Brillouin scattering experiments, which give the dynamic 
structure factors S(k, o) for the interesting region, as mentioned b e f ~ r e . ~  5*45  

For our simulations, we have determined t, directly from the time-dependent 
envelope of Gdr, t ) .  

G(r, t) .  

4 FINITE SYSTEM 

For every many-body system that involves a finite number of particles N ,  
the statistical mechanical partition function Z ( 0 ,  A, N )  is built up by a 
finite sum of analytic terms of the corresponding thermodynamic variables 
defined for an arbitrary, physically reasonable range. A thermodynamic 
quantity constructed from the derivatives of 1nZ has consequently to be 
analytical, too, and cannot exhibit any singularities. A critical phase-transition 
characterized by such a singular behaviour of thermodynamic properties is 
therefore not possible for finite systems.46 

In particular, a model system will not exhibit a critical point, if its size 
is limited in the sense that the correlation length is restricted at the critical 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



254 C. HOHEISEL 

point. In this rigorous sense no experimental system is able to  show a critical 
state. However, for practical purposes it is sufficient to study systems whose 
size is large enough to show coherence lengths of orders of magnitude greater 
than the average-distance of the particles involved. That condition is cer- 
tainly accomplished for all macroscopic liquid systems. 

For simulation calculations on finite systems we have to pay great atten- 
tion to the fact that the model system approaching the critical point of the 
ideal infinite system will be increasingly less able to describe critical condi- 
tions of the ideal system. These effects due to the finite shape of the model 
system are known as “ rounding-effects.” By rounding we mean the distorted 
behaviour of properties of a finite system near its “ phase-transition’’ com- 
pared to that of the pertaining infinite system. For instance, the specific 
heat capacity of a mono-system diverges at the critical point; the correspond- 
ing finite system does exhibit a similar rising of the heat capacity by approach- 
ing the critical temperature (of the ideal system), but in this case the values 
go through a maximum and the position of the maximum is shifted with 
respect to temperature. In other words, the finite system has its own pseudo- 
critical point, where “weaker” critical phenomena are found than in the 
ideal ~ y s t e m . ~ . ~ ’  For Ising-models it can be shown that the limitation of only 
one dimension of the system effects drastically the critical De- 
tails are found in Ref. 5. 

Considering computer-simulation calculations we expect erroneous com- 
putation results, when the coherence length t has reached the significant 
length of the ensemble volume, often half the length of a cubic box.? 

The magnitude of these deviations near a critical point can be estimated 
by calculations with ensembles of different particle numbers. Pertaining to 
this, Monte-Carlo computations on spin-systems with N = 54 up to N = 
1728 particles have generated valuable inf~rmat ion .~  For fluids this kind 
of simulation has hitherto not been performed, since in this case one has to 
treat three-dimensional systems and the change of the particle number has 
little effect on the size of the model-box. 

5 MOLECULAR DYNAMICS CALCULATIONS ON SIMPLE 
PARTIALLY MISCIBLE BINARY SYSTEMS 

5.1 Method 

The method of MDC is now well established and should not be described in 
the following te~t .4’*~* We will, however, give an outline of the technical 
details involved in our calculations on the three systems studied herein. The 

t The usual definition of  5 refers to the diurnerer of the ordered range of particles i.e. of the 
volume of the ‘particle-cluster,’ whereas here it always refers to the radius. 
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TABLE I 
Technical details of the MD-runs 

255 

System N At[s] r, [oI units] nN " E  

CH4/CF4 256 I . 1 0 - l 4  2.8-3.0 500-2000 2000-4000 
I 

I1 

111 
Ne/Kr 256-864 1 . l o - '*  2.8-3.3 500-1oOO 2000-5000 

He/Xe 864 5.10-" 3.2 loo0 3000 

AI integration step. 
N number of particles. 
r, cut-off radius. 
nh. equilibration steps. 
nE steps after equilibration. 

length of the runs and the size of the ensembles are presented in Table I. For 
most instances the maximum values given in this table refer to near-critical 
conditions of the systems. 

Temperature and pressure without long-range corrections were evaluated 
during the equilibrium-runs. The temperatures fluctuated less than 0.2 K. 
The accuracy of the pressure values corrected for the potential cut-off dis- 
tance is estimated to be about 10 % for system I1 and 15 % for system 111. 
For system I we avoided an estimation of error-bars on the grounds men- 
tioned later. For all the temperatures, the pressure of system I1 and system 
I11 was constant at 1940 f 30 bar and 790 k 30 bar, respectively. 

The evaluation of the time-independent and time-dependent pair-distribu- 
tion functions (PDF) was carried out by averaging 100-300 configurations 
for system I and 700-3000 for the systems I1 and I11 per run. We performed 
5-6 runs per thermodynamic state for system I, and 3-5 runs per state for 
the systems I1 and 111. For the PDF the average-error is estimated to be 
2 % pertaining to the systems I1 and I11 and 8 % to system I. The selfdiffusion 
coefficients (SDC) have been determined by the mean-square displacements 
of particles for system I. For the systems I1 and 111, the SDC were calculated 
both from the mean-square displacements and from the velocity auto-correla- 
tion function (VACF).49 

The error-bars amount to 10 % for system I and to 5 % for the systems I1 
and I11 resulting from a total of averaging steps of 5000-50,000 depending 
on the number of particles. 

5.2 Systems 

At present the only possibility to study theoretically cooperative phenomena 
at the vicinity of a critical point of fluids is offered by computer-simulations of 
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256 C. HOHEISEL 

real systems. For that purpose we have chosen the simplest binary fluid 
mixtures which show a critical mixing point and whose molecules can 
approximately be regarded as spherically symmetric. 

As far as a genuine liquid-liquid (L-L) phase separation is concerned, we 
were confined to the mixture CH4/CF4. Although the molecules of this 
system bear an octupolmoment and have rotational degrees of freedom, it is 
reasonable to describe the interaction of these molecules in a first step by 
spherically symmetric potentials. Furthermore this binary liquid mixture 
is well investigated experimentally and hence the 1-2 pair-potential function 
has been evaluated from measurements of the second virial c~e f f i c i en t .~~  
Additionally our own MDC on pure liquid methane based on (12-6) 
Lennard-Jones (L-J) potentials had led to satisfactory agreement with 
e~periment.~’ 

The system I, CH,/CF4, exhibits an upper critical mixing point at 
T,  = 94.5 K and x1 = 0.57 under its saturation pressure. For the rest of this 
report, the subscript 1 shall always refer to the first component of a system 
AD, and x shall denote the mole fraction if not explained otherwise. In 
Figure 1 we show the T x-phase diagram of CH4/CF4 under its saturation 
pressure measured by Scott et al.52 

CH, ICF, ““t 96 Tcrit. = 9L.5K 

86 - 

8 L  - 
I I I I 

1.0 0.8 0.6 0.4 0.2 

x 1  - f- 

mole fraction methane 

1.0 0.8 0.6 0.4 0.2 

x 1  - f- 

mole fraction methane 
FIGURE 1 T,x-projection of  the phasediagram for system 1 at the saturation pre~sure . ’~  
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 

p +  

257 

two phase 
region 

one phase 
region 

of component II 

T 
FIGURE 2 P,T-projection of a phase diagram showing gas-gas equilibria of the first, 1, 
the second type, 2, for a binary fluid. 

and 

We have carried out calculations for the complete concentration range and 
temperatures between 95 and 150 K for the homogeneous part of the phase 
region of the experimental system. The temperature interval lies below the 
critical temperatures of the pure substances and near the melting tem- 
peratures T, : 

cF4 = 225 K, 

cF4 = 90K,  y4 = 91 K. 

cn4 = 192 K; 

The densities of the pure substances were taken from the common literature, 
for the densities of the mixture we used average values which differed un- 
remarkably from the values experimentally determined for a few tem- 
peratures.’2v52 

In contrast to system I, the systems I1 and 1111, Ne/Kr and He/Xe, are 
much better suited for MDC. These rare-gas mixtures show “gas-gas phase 
separation” found by Trappeniers et al?’ and by De Swaan Arons et aLS4 
The system 111 undergoes a gas-gas equilibrium of the first type, while 
system I1 shows an equilibrium of the second type. The structure of those 
equilibria is in detail discussed by Schneider. l 5  

For a gas-gas equilibrium of the first type the critical line runs monoton- 
ously to higher pressures at higher temperatures, whereas for an equilibrium 
of the second kind a temperature minimum is passed. In Figure 2 we have 
schematically plotted a P, T-projection of a P, ?: x-surface of a binary system 
showing gas-gas equilibria of the first, 1, and the second kind, 2.15 
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305 

300 

295 

290 
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He I Xe 
695 bar 

Tcr,i : 305.2K- - - 

- - 

- - 

- - 

0 0.5 1.0 

TIK 4 

170 - 

160 - 

150 - 

FIGURE 3 

Ne I Kr 
1875 bar 

Tcrii = 166 LK Tcrii = 166 LK 
X , r i t . =  0.63 \ 

1 

0 0.5 1 .o 
mole fraction Ne 

T,x-projection of the phase diagram for system 

1 I 
0 0.5 1 .o 

mole fraction Ne 
T,x-projection of the phase diagram for system 11.53 

x1- 

T,x-projection of the phase diagram for system HI.’* FIGURE 4 
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 

TABLE I1 

Densities calculated from the R-K 
equation of state 

259 

~~ 

2.2246 
2.3118 
2.4018 
1.8300 
1.9182 
2.0121 
1.3449 
1.4256 
1.5152 

230 
200 
170 
230 
200 
170 
230 
200 
I70 

0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.8 
0.8 
0.8 

The most reliable calculations, basical for all the present problems, have 
been performed for the system 11, Ne/Kr. 

In Figure 3 we show the phase-diagram of this system 11, as it is measured 
by Trappeniers et ~ 1 . ’ ~  The upper critical mixing point lies at T,  = 166.4 K, 
x1 = 0.63, under a pressure of 1875 bar. 

Simulations were done for temperatures of 150 K-250 K and for the whole 
concentration range. The densities were calculated from a Redlich-Kwong 
(R-K) equation of state which had been fitted to experimental PVT-data 
and phaseequilibrium data for the high-pressure range.” 

In a similar way we obtained the density of system 111. A few densities of 
the mixture Ne/Kr are presented on Table 11. 

For further comparisons we have performed MDC on system 111. How- 
ever, the calculations on this system are only of secondary importance 
with respect to the problems considered here, particularly, because system I11 
is another example of a “gas-gas phase separation.” 

For completeness, we have drawn the T x-diagram of system I11 in Figure 4. 
The upper critical mixing point is located at T,  = 305.2 K and x1 = 0.51 
under a pressure of 695 

5.3 Molecular interaction potentials 

The interaction potentials for the molecules contained in the three mixtures 
were approximated by L-J (12d)-potential functions : 

The two-parameter potential functions are regarded as appropriate effective 
pair-potentials for the simulation of real liquids and liquid mixtures by 
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260 C .  HOHEISEL 

MDC. Thus our calculations for the region of the critical point should be 
based on these potential functions, too. 

It is partly possible to simulate a liquid in terms of a hard-core potential, 
because the repulsive part of the potential function plays the main part in 
systems of condensed  molecule^.'^ The modelling of cooperative effects, 
however, seems to .require also the attractive term of the potential func- 
tion.’** s9 Additionally for L-J potential functions, there exists a great deal 
of experimental and theoretical experience for deriving the potential param- 
eters from the second virial coefficient and viscosity numbers, specifically, 
when rare-gases are considered. 

For system I the interactions 1-1,2-2 and 1-2 have been experimentally 
evaluated in terms of relative volume and energy parameters by measure- 
ments of the second virial coefficient and of the viscosity 
Table 111 lists the E ,  cr parameters used for the L-J potentials of system I. 
Both values, E , ~  and nl2 ,  differ appreciably from the values predicted by the 
Lorentz-Berthelot rules. The energy parameter is even smaller than E ,  or 
E ~ .  This appears to be the usual case for fluorocarbon/hydrocarbon systems.I3 
The Lorentz-Berthelot rules, however, do by no means predict valuable 1-2 
potentials for most of the real mixtures, a much better description of the 1-2 
interaction is however achieved by refined mixing rules proposed by 
Kohler.” 

These “experimental” L-J parameters were applied to all our MDC 
on system I and the pure substances without further adjustment.12 While 
the calculated SDC of the pure liquids, CH, and CF,, agreed well with 
the experimental values, as seen from Figure 5,  the compressibility factors 
showed larger deviations from the experimental ones, especially the theoreti- 
cal values for CF4 exceeded the experimental numbers by more than one 
order of magnitude. It is now known that (124)-potential functions are 
insufficient for such globular molecules in the liquid state and have to 
be replaced by functions with a larger repulsive part, as (18-6) or (24-6)- 
 potential^.^^*^' Our later preliminary calculations based on (1 8-6)- 
potentials reproduced well the experimental compressibility factors and 

TABLE 111 

Lennard-Jones potential-parameters’ 

CH4/CF4 (system I) 
dk’s [Kl 0 [A1 

CH, 139.0 3.822 
CH4-CF4 127.5 4.327 
CF, 141.4 4.747 

a Boltzmann constant. 
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10.0 

5.0 

1.0 

0.5 

26 I 

- 
- 

- 
- 

0 .  MD 
- Exper. t 

0’11!.5 017 Of9 lfl - 
V K - ’  T 

FIGURE 5 SDC of pure liquid CH, and CF, as function of temperature at the saturation 
pressure. 

additionally indicated that the results for the mixture at about equimolar 
concentration resembled those calculated on ‘the (12-6)-potentials. Appar- 
ently the draw-back of the (12-6)potential for the description of the CF,- 
interaction has little effect on MDC for the mixture around equimolar corn= 
position. Our results at higher CF,-concentrations will therefore not be 
interpreted. 

For the systems I1 and I11 we have initially chosen the E and o-parameters 
commonly proposed by the literature.61 In subsequent steps the 1-1 and 
2-2 parameters as well as the 1-2 parameters were corrected in the way 
described below. The parameters finally obtained are listed in Table IV. 
The two systems I1 and 111, are certainly not to be regarded as “ideal” 
mixtures, at least not at this range of liquid-like densities under high pressure. 
While for system I the three interaction potentials have roughly equal 
potential-minima, the interactions for the latter are extremely different. 

The mass ratio of the molecules is comparable for system I and I1 and 
amounts to - 4, but for system 111 this ratio reaches the value ofmXe/mHc - 35. 
The fitting procedure for the E, o-values was first carried out on the pure sub- 
stances. The values of the 1-1 and 2-2 interaction were changed to reproduce 
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TABLE IV 

Lennard-Jones potential-parameters6* 

Ne/Kr (system 11) 
E l 6  [KI 0 [A1 

Ne 34.2 2.86 
Ne-Kr 64.6 3.26 
Kr 167.0 3.67 

He/Xe (system 111) 
4k.B [Kl Q [A1 

He 10.8 2.570 
He-Xe 44.6 3.7586 
Xe 224.0 3.385 

~~ ~~ ~~ 

a Boltzmann constant. 

by MDC the experimental transport coefficients and the compressibility 
factors (CF) of liquid Ne, Kr and Xe. Experimental SDC and CF only 
exist for the low pressure range, so that our computations were limited to 
this region. From Figure 6 we can see the agreement between the theoretical 
and experimental SDC of pure Ne and Kr.62 The calculated CF also fitted 
well into the experimental ones providing a reliable simulation basis for the 
pure liquids. 

D . lo5 /  + 
- Exper 

MDC 

I I I f / K - '  
2 3 L 

FIGURE 6 SDC of pure liquid Ne and Kr as function of temperature at low pressures.b2 
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MOLECULAR DYNAMICS OF BINARY FLUIDS I 263 

The subsequent MDC on the mixtures were to indicate the validity of 
these potentials for the simulation of the high-pressure range. As we have 
already mentioned, the existing PVT-data for the mixtures have bken applied 
to an R-K equation of state.62 According to common experience this R-K 
equation reproduces well the experimental values within a wide range. So 
the use of the R-K equation was two-fold: firstly, to compare directly the 
MDC-CF with the experimental ones, secondly, to adjust the c l Z ,  o12 
values by the a, b-parameters occuring in the R-K equation of state.55 For 
the interaction of unlike pairs we obtained in this way a correction due to 
the non-ideality of the mixtures. These values for system I1 and 111 are 
listed on Table IV. It is seen from this table that for system I1 e12 is about 
20 % smaller than the “ideal” value 6, for system I11 more than 10 %. 
u12 is little changed for system 11, but for system 111 about 15% relative to 
the “ideal” value, oI2 = )(ol + 02).63 

With these 1-2 potentials and the use of the 1- 1, 2-2 potentials initially 
adjusted, we were able to reproduce the experimental CF of the mixtures 
for the high-pressure range. Since the pressure is a quantity strongly depend- 
ent on the effective potentials inserted in MDC, we regarded this agreement 
as a definite indication of the application of these potentials to our MDC.64 
The results will in particular be discussed in the subsequent article.’ 
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